Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Quickly Finding the Best Linear Model in High Dimensions (1907.01728v1)

Published 3 Jul 2019 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: We study the problem of finding the best linear model that can minimize least-squares loss given a data-set. While this problem is trivial in the low dimensional regime, it becomes more interesting in high dimensions where the population minimizer is assumed to lie on a manifold such as sparse vectors. We propose projected gradient descent (PGD) algorithm to estimate the population minimizer in the finite sample regime. We establish linear convergence rate and data dependent estimation error bounds for PGD. Our contributions include: 1) The results are established for heavier tailed sub-exponential distributions besides sub-gaussian. 2) We directly analyze the empirical risk minimization and do not require a realizable model that connects input data and labels. 3) Our PGD algorithm is augmented to learn the bias terms which boosts the performance. The numerical experiments validate our theoretical results.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.