Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Semantic Driven Fielded Entity Retrieval (1907.01457v1)

Published 2 Jul 2019 in cs.IR

Abstract: A common approach for knowledge-base entity search is to consider an entity as a document with multiple fields. Models that focus on matching query terms in different fields are popular choices for searching such entity representations. An instance of such a model is FSDM (Fielded Sequential Dependence Model). We propose to integrate field-level semantic features into FSDM. We use FSDM to retrieve a pool of documents, and then to use semantic field-level features to re-rank those documents. We propose to represent queries as bags of terms as well as bags of entities, and eventually, use their dense vector representation to compute semantic features based on query document similarity. Our proposed re-ranking approach achieves significant improvement in entity retrieval on the DBpedia-Entity (v2) dataset over existing FSDM model. Specifically, for all queries we achieve 2.5% and 1.2% significant improvement in NDCG@10 and NDCG@100, respectively.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.