Papers
Topics
Authors
Recent
2000 character limit reached

Semantic Driven Fielded Entity Retrieval (1907.01457v1)

Published 2 Jul 2019 in cs.IR

Abstract: A common approach for knowledge-base entity search is to consider an entity as a document with multiple fields. Models that focus on matching query terms in different fields are popular choices for searching such entity representations. An instance of such a model is FSDM (Fielded Sequential Dependence Model). We propose to integrate field-level semantic features into FSDM. We use FSDM to retrieve a pool of documents, and then to use semantic field-level features to re-rank those documents. We propose to represent queries as bags of terms as well as bags of entities, and eventually, use their dense vector representation to compute semantic features based on query document similarity. Our proposed re-ranking approach achieves significant improvement in entity retrieval on the DBpedia-Entity (v2) dataset over existing FSDM model. Specifically, for all queries we achieve 2.5% and 1.2% significant improvement in NDCG@10 and NDCG@100, respectively.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.