Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Modified Actor-Critics (1907.01298v2)

Published 2 Jul 2019 in cs.LG, cs.AI, and stat.ML

Abstract: Recent successful deep reinforcement learning algorithms, such as Trust Region Policy Optimization (TRPO) or Proximal Policy Optimization (PPO), are fundamentally variations of conservative policy iteration (CPI). These algorithms iterate policy evaluation followed by a softened policy improvement step. As so, they are naturally on-policy. In this paper, we propose to combine (any kind of) soft greediness with Modified Policy Iteration (MPI). The proposed abstract framework applies repeatedly: (i) a partial policy evaluation step that allows off-policy learning and (ii) any softened greedy step. Our contribution can be seen as a new generic tool for the deep reinforcement learning toolbox. As a proof of concept, we instantiate this framework with the PPO greediness. Comparison to the original PPO shows that our algorithm is much more sample efficient. We also show that it is competitive with the state-of-art off-policy algorithm Soft Actor Critic (SAC).

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.