Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Tandem Learning Rule for Effective Training and Rapid Inference of Deep Spiking Neural Networks (1907.01167v3)

Published 2 Jul 2019 in cs.NE

Abstract: Spiking neural networks (SNNs) represent the most prominent biologically inspired computing model for neuromorphic computing (NC) architectures. However, due to the non-differentiable nature of spiking neuronal functions, the standard error back-propagation algorithm is not directly applicable to SNNs. In this work, we propose a tandem learning framework, that consists of an SNN and an Artificial Neural Network (ANN) coupled through weight sharing. The ANN is an auxiliary structure that facilitates the error back-propagation for the training of the SNN at the spike-train level. To this end, we consider the spike count as the discrete neural representation in the SNN, and design ANN neuronal activation function that can effectively approximate the spike count of the coupled SNN. The proposed tandem learning rule demonstrates competitive pattern recognition and regression capabilities on both the conventional frame-based and event-based vision datasets, with at least an order of magnitude reduced inference time and total synaptic operations over other state-of-the-art SNN implementations. Therefore, the proposed tandem learning rule offers a novel solution to training efficient, low latency, and high accuracy deep SNNs with low computing resources.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.