Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

High-speed Railway Fastener Detection and Localization Method based on convolutional neural network (1907.01141v2)

Published 2 Jul 2019 in cs.CV

Abstract: Railway transportation is the artery of China's national economy and plays an important role in the development of today's society. Due to the late start of China's railway security inspection technology, the current railway security inspection tasks mainly rely on manual inspection, but the manual inspection efficiency is low, and a lot of manpower and material resources are needed. In this paper, we establish a steel rail fastener detection image dataset, which contains 4,000 rail fastener pictures about 4 types. We use the regional suggestion network to generate the region of interest, extracts the features using the convolutional neural network, and fuses the classifier into the detection network. With online hard sample mining to improve the accuracy of the model, we optimize the Faster RCNN detection framework by reducing the number of regions of interest. Finally, the model accuracy reaches 99% and the speed reaches 35FPS in the deployment environment of TITAN X GPU.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.