Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Semi-Supervised Self-Organizing Map for Clustering and Classification (1907.01070v1)

Published 1 Jul 2019 in cs.LG and stat.ML

Abstract: There has been an increasing interest in semi-supervised learning in the recent years because of the great number of datasets with a large number of unlabeled data but only a few labeled samples. Semi-supervised learning algorithms can work with both types of data, combining them to obtain better performance for both clustering and classification. Also, these datasets commonly have a high number of dimensions. This article presents a new semi-supervised method based on self-organizing maps (SOMs) for clustering and classification, called Semi-Supervised Self-Organizing Map (SS-SOM). The method can dynamically switch between supervised and unsupervised learning during the training according to the availability of the class labels for each pattern. Our results show that the SS-SOM outperforms other semi-supervised methods in conditions in which there is a low amount of labeled samples, also achieving good results when all samples are labeled.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.