Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Nonlinearizing two-parameter eigenvalue problems (1907.00913v2)

Published 1 Jul 2019 in math.NA and cs.NA

Abstract: We investigate a technique to transform a linear two-parameter eigenvalue problem, into a nonlinear eigenvalue problem (NEP). The transformation stems from an elimination of one of the equations in the two-parameter eigenvalue problem, by considering it as a (standard) generalized eigenvalue problem. We characterize the equivalence between the original and the nonlinearized problem theoretically and show how to use the transformation computationally. Special cases of the transformation can be interpreted as a reversed companion linearization for polynomial eigenvalue problems, as well as a reversed (less known) linearization technique for certain algebraic eigenvalue problems with square-root terms. Moreover, by exploiting the structure of the NEP we present algorithm specializations for NEP methods, although the technique also allows general solution methods for NEPs to be directly applied. The nonlinearization is illustrated in examples and simulations, with focus on problems where the eliminated equation is of much smaller size than the other two-parameter eigenvalue equation. This situation arises naturally in domain decomposition techniques. A general error analysis is also carried out under the assumption that a backward stable eigenvalue solver method is used to solve the eliminated problem, leading to the conclusion that the error is benign in this situation.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.