Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Graph-based Nearest Neighbor Search: From Practice to Theory (1907.00845v4)

Published 1 Jul 2019 in cs.DS and math.PR

Abstract: Graph-based approaches are empirically shown to be very successful for the nearest neighbor search (NNS). However, there has been very little research on their theoretical guarantees. We fill this gap and rigorously analyze the performance of graph-based NNS algorithms, specifically focusing on the low-dimensional (d << \log n) regime. In addition to the basic greedy algorithm on nearest neighbor graphs, we also analyze the most successful heuristics commonly used in practice: speeding up via adding shortcut edges and improving accuracy via maintaining a dynamic list of candidates. We believe that our theoretical insights supported by experimental analysis are an important step towards understanding the limits and benefits of graph-based NNS algorithms.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.