Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

iPool -- Information-based Pooling in Hierarchical Graph Neural Networks (1907.00832v2)

Published 1 Jul 2019 in cs.LG, cs.SI, and stat.ML

Abstract: With the advent of data science, the analysis of network or graph data has become a very timely research problem. A variety of recent works have been proposed to generalize neural networks to graphs, either from a spectral graph theory or a spatial perspective. The majority of these works however focus on adapting the convolution operator to graph representation. At the same time, the pooling operator also plays an important role in distilling multiscale and hierarchical representations but it has been mostly overlooked so far. In this paper, we propose a parameter-free pooling operator, called iPool, that permits to retain the most informative features in arbitrary graphs. With the argument that informative nodes dominantly characterize graph signals, we propose a criterion to evaluate the amount of information of each node given its neighbors, and theoretically demonstrate its relationship to neighborhood conditional entropy. This new criterion determines how nodes are selected and coarsened graphs are constructed in the pooling layer. The resulting hierarchical structure yields an effective isomorphism-invariant representation of networked data in arbitrary topologies. The proposed strategy is evaluated in terms of graph classification on a collection of public graph datasets, including bioinformatics and social networks, and achieves state-of-the-art performance on most of the datasets.

Citations (40)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube