Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Weight Normalization based Quantization for Deep Neural Network Compression (1907.00593v1)

Published 1 Jul 2019 in cs.LG, cs.CV, and stat.ML

Abstract: With the development of deep neural networks, the size of network models becomes larger and larger. Model compression has become an urgent need for deploying these network models to mobile or embedded devices. Model quantization is a representative model compression technique. Although a lot of quantization methods have been proposed, many of them suffer from a high quantization error caused by a long-tail distribution of network weights. In this paper, we propose a novel quantization method, called weight normalization based quantization (WNQ), for model compression. WNQ adopts weight normalization to avoid the long-tail distribution of network weights and subsequently reduces the quantization error. Experiments on CIFAR-100 and ImageNet show that WNQ can outperform other baselines to achieve state-of-the-art performance.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)