Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A multiscale reduced basis method for Schrödinger equation with multiscale and random potentials (1907.00349v1)

Published 30 Jun 2019 in math.NA and cs.NA

Abstract: The semiclassical Schr\"{o}dinger equation with multiscale and random potentials often appears when studying electron dynamics in heterogeneous quantum systems. As time evolves, the wavefunction develops high-frequency oscillations in both the physical space and the random space, which poses severe challenges for numerical methods. In this paper, we propose a multiscale reduced basis method, where we construct multiscale reduced basis functions using an optimization method and the proper orthogonal decomposition method in the physical space and employ the quasi-Monte Carlo method in the random space. Our method is verified to be efficient: the spatial gridsize is only proportional to the semiclassical parameter and the number of samples in the random space is inversely proportional to the same parameter. Several theoretical aspects of the proposed method, including how to determine the number of samples in the construction of multiscale reduced basis and convergence analysis, are studied with numerical justification. In addition, we investigate the Anderson localization phenomena for Schr\"{o}dinger equation with correlated random potentials in both 1D and 2D.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube