Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Generative Mask Pyramid Network for CT/CBCT Metal Artifact Reduction with Joint Projection-Sinogram Correction (1907.00294v4)

Published 29 Jun 2019 in eess.IV and cs.CV

Abstract: A conventional approach to computed tomography (CT) or cone beam CT (CBCT) metal artifact reduction is to replace the X-ray projection data within the metal trace with synthesized data. However, existing projection or sinogram completion methods cannot always produce anatomically consistent information to fill the metal trace, and thus, when the metallic implant is large, significant secondary artifacts are often introduced. In this work, we propose to replace metal artifact affected regions with anatomically consistent content through joint projection-sinogram correction as well as adversarial learning. To handle the metallic implants of diverse shapes and large sizes, we also propose a novel mask pyramid network that enforces the mask information across the network's encoding layers and a mask fusion loss that reduces early saturation of adversarial training. Our experimental results show that the proposed projection-sinogram correction designs are effective and our method recovers information from the metal traces better than the state-of-the-art methods.

Citations (45)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.