Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Upper Bounding the Graph Edit Distance Based on Rings and Machine Learning (1907.00203v2)

Published 29 Jun 2019 in cs.DS

Abstract: The graph edit distance (GED) is a flexible distance measure which is widely used for inexact graph matching. Since its exact computation is NP-hard, heuristics are used in practice. A popular approach is to obtain upper bounds for GED via transformations to the linear sum assignment problem with error-correction (LSAPE). Typically, local structures and distances between them are employed for carrying out this transformation, but recently also machine learning techniques have been used. In this paper, we formally define a unifying framework LSAPE-GED for transformations from GED to LSAPE. We also introduce rings, a new kind of local structures designed for graphs where most information resides in the topology rather than in the node labels. Furthermore, we propose two new ring based heuristics RING and RING-ML, which instantiate LSAPE-GED using the traditional and the machine learning based approach for transforming GED to LSAPE, respectively. Extensive experiments show that using rings for upper bounding GED significantly improves the state of the art on datasets where most information resides in the graphs' topologies. This closes the gap between fast but rather inaccurate LSAPE based heuristics and more accurate but significantly slower GED algorithms based on local search.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.