Papers
Topics
Authors
Recent
2000 character limit reached

Fast Convolutive Nonnegative Matrix Factorization Through Coordinate and Block Coordinate Updates

Published 29 Jun 2019 in cs.LG and stat.ML | (1907.00139v1)

Abstract: Identifying recurring patterns in high-dimensional time series data is an important problem in many scientific domains. A popular model to achieve this is convolutive nonnegative matrix factorization (CNMF), which extends classic nonnegative matrix factorization (NMF) to extract short-lived temporal motifs from a long time series. Prior work has typically fit this model by multiplicative parameter updates---an approach widely considered to be suboptimal for NMF, especially in large-scale data applications. Here, we describe how to extend two popular and computationally scalable NMF algorithms---Hierarchical Alternating Least Squares (HALS) and Alternatining Nonnegative Least Squares (ANLS)---for the CNMF model. Both methods demonstrate performance advantages over multiplicative updates on large-scale synthetic and real world data.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.