Papers
Topics
Authors
Recent
2000 character limit reached

Motion Prediction with Recurrent Neural Network Dynamical Models and Trajectory Optimization (1906.12279v1)

Published 28 Jun 2019 in cs.RO

Abstract: Predicting human motion in unstructured and dynamic environments is difficult as humans naturally exhibit complex behaviors that can change drastically from one environment to the next. In order to alleviate this issue, we propose to encode the lower level aspects of human motion separately from the higher level geometrical aspects, which we believe will generalize better over environments. In contrast to our prior work~\cite{kratzer2018}, we encode the short-term behavior by using a state-of-the-art recurrent neural network structure instead of a Gaussian process. In order to perform longer-term behavior predictions that account for variation in tasks and environments, we propose to make use of gradient-based trajectory optimization. Preliminary experiments on real motion data demonstrate the efficacy of the approach.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.