Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

CLAREL: Classification via retrieval loss for zero-shot learning (1906.11892v3)

Published 31 May 2019 in cs.CV, cs.LG, and stat.ML

Abstract: We address the problem of learning fine-grained cross-modal representations. We propose an instance-based deep metric learning approach in joint visual and textual space. The key novelty of this paper is that it shows that using per-image semantic supervision leads to substantial improvement in zero-shot performance over using class-only supervision. On top of that, we provide a probabilistic justification for a metric rescaling approach that solves a very common problem in the generalized zero-shot learning setting, i.e., classifying test images from unseen classes as one of the classes seen during training. We evaluate our approach on two fine-grained zero-shot learning datasets: CUB and FLOWERS. We find that on the generalized zero-shot classification task CLAREL consistently outperforms the existing approaches on both datasets.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.