Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Lattice-Based Unsupervised Test-Time Adaptation of Neural Network Acoustic Models (1906.11521v1)

Published 27 Jun 2019 in cs.CL, cs.SD, and eess.AS

Abstract: Acoustic model adaptation to unseen test recordings aims to reduce the mismatch between training and testing conditions. Most adaptation schemes for neural network models require the use of an initial one-best transcription for the test data, generated by an unadapted model, in order to estimate the adaptation transform. It has been found that adaptation methods using discriminative objective functions - such as cross-entropy loss - often require careful regularisation to avoid over-fitting to errors in the one-best transcriptions. In this paper we solve this problem by performing discriminative adaptation using lattices obtained from a first pass decoding, an approach that can be readily integrated into the lattice-free maximum mutual information (LF-MMI) framework. We investigate this approach on three transcription tasks of varying difficulty: TED talks, multi-genre broadcast (MGB) and a low-resource language (Somali). We find that our proposed approach enables many more parameters to be adapted without over-fitting being observed, and is successful even when the initial transcription has a WER in excess of 50%.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.