Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Reducing Spreading Processes on Networks to Markov Population Models (1906.11508v1)

Published 27 Jun 2019 in cs.SI

Abstract: Stochastic processes on complex networks, where each node is in one of several compartments, and neighboring nodes interact with each other, can be used to describe a variety of real-world spreading phenomena. However, computational analysis of such processes is hindered by the enormous size of their underlying state space. In this work, we demonstrate that lumping can be used to reduce any epidemic model to a Markov Population Model (MPM). Therefore, we propose a novel lumping scheme based on a partitioning of the nodes. By imposing different types of counting abstractions, we obtain coarse-grained Markov models with a natural MPM representation that approximate the original systems. This makes it possible to transfer the rich pool of approximation techniques developed for MPMs to the computational analysis of complex networks' dynamics. We present numerical examples to investigate the relationship between the accuracy of the MPMs, the size of the lumped state space, and the type of counting abstraction.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.