Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack (1906.10982v1)

Published 26 Jun 2019 in cs.DS

Abstract: The area of parameterized approximation seeks to combine approximation and parameterized algorithms to obtain, e.g., (1+eps)-approximations in f(k,eps)n{O(1)} time where k is some parameter of the input. We obtain the following results on parameterized approximability: 1) In the maximum independent set of rectangles problem (MISR) we are given a collection of n axis parallel rectangles in the plane. Our goal is to select a maximum-cardinality subset of pairwise non-overlapping rectangles. This problem is NP-hard and also W[1]-hard [Marx, ESA'05]. The best-known polynomial-time approximation factor is O(loglog n) [Chalermsook and Chuzhoy, SODA'09] and it admits a QPTAS [Adamaszek and Wiese, FOCS'13; Chuzhoy and Ene, FOCS'16]. Here we present a parameterized approximation scheme (PAS) for MISR, i.e. an algorithm that, for any given constant eps>0 and integer k>0, in time f(k,eps)n{g(eps)}, either outputs a solution of size at least k/(1+eps), or declares that the optimum solution has size less than k. 2) In the (2-dimensional) geometric knapsack problem (TDK) we are given an axis-aligned square knapsack and a collection of axis-aligned rectangles in the plane (items). Our goal is to translate a maximum cardinality subset of items into the knapsack so that the selected items do not overlap. In the version of TDK with rotations (TDKR), we are allowed to rotate items by 90 degrees. Both variants are NP-hard, and the best-known polynomial-time approximation factors are 558/325+eps and 4/3+eps, resp. [Galvez et al., FOCS'17]. These problems admit a QPTAS for polynomially bounded item sizes [Adamaszek and Wiese, SODA'15]. We show that both variants are W[1]-hard. Furthermore, we present a PAS for TDKR. For all considered problems, getting time f(k,eps)n{O(1)}, rather than f(k,eps)n{g(eps)}, would give FPT time f'(k)n{O(1)} exact algorithms using eps=1/(k+1), contradicting W[1]-hardness.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.