Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the performance of residual block design alternatives in convolutional neural networks for end-to-end audio classification (1906.10891v3)

Published 26 Jun 2019 in cs.SD, cs.LG, and eess.AS

Abstract: Residual learning is a recently proposed learning framework to facilitate the training of very deep neural networks. Residual blocks or units are made of a set of stacked layers, where the inputs are added back to their outputs with the aim of creating identity mappings. In practice, such identity mappings are accomplished by means of the so-called skip or residual connections. However, multiple implementation alternatives arise with respect to where such skip connections are applied within the set of stacked layers that make up a residual block. While ResNet architectures for image classification using convolutional neural networks (CNNs) have been widely discussed in the literature, few works have adopted ResNet architectures so far for 1D audio classification tasks. Thus, the suitability of different residual block designs for raw audio classification is partly unknown. The purpose of this paper is to analyze and discuss the performance of several residual block implementations within a state-of-the-art CNN-based architecture for end-to-end audio classification using raw audio waveforms. For comparison purposes, we analyze as well the performance of the residual blocks under a similar 2D architecture using a conventional time-frequency audio represen-tation as input. The results show that the achieved accuracy is considerably dependent, not only on the specific residual block implementation, but also on the selected input normalization.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.