Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

(Pseudo) Random Quantum States with Binary Phase (1906.10611v2)

Published 25 Jun 2019 in quant-ph and cs.CR

Abstract: We prove a quantum information-theoretic conjecture due to Ji, Liu and Song (CRYPTO 2018) which suggested that a uniform superposition with random \emph{binary} phase is statistically indistinguishable from a Haar random state. That is, any polynomial number of copies of the aforementioned state is within exponentially small trace distance from the same number of copies of a Haar random state. As a consequence, we get a provable elementary construction of \emph{pseudorandom} quantum states from post-quantum pseudorandom functions. Generating pseduorandom quantum states is desirable for physical applications as well as for computational tasks such as quantum money. We observe that replacing the pseudorandom function with a $(2t)$-wise independent function (either in our construction or in previous work), results in an explicit construction for \emph{quantum state $t$-designs} for all $t$. In fact, we show that the circuit complexity (in terms of both circuit size and depth) of constructing $t$-designs is bounded by that of $(2t)$-wise independent functions. Explicitly, while in prior literature $t$-designs required linear depth (for $t > 2$), this observation shows that polylogarithmic depth suffices for all $t$. We note that our constructions yield pseudorandom states and state designs with only real-valued amplitudes, which was not previously known. Furthermore, generating these states require quantum circuit of restricted form: applying one layer of Hadamard gates, followed by a sequence of Toffoli gates. This structure may be useful for efficiency and simplicity of implementation.

Citations (48)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.