Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Deceptive Reinforcement Learning Under Adversarial Manipulations on Cost Signals (1906.10571v3)

Published 24 Jun 2019 in cs.LG, cs.AI, and math.OC

Abstract: This paper studies reinforcement learning (RL) under malicious falsification on cost signals and introduces a quantitative framework of attack models to understand the vulnerabilities of RL. Focusing on $Q$-learning, we show that $Q$-learning algorithms converge under stealthy attacks and bounded falsifications on cost signals. We characterize the relation between the falsified cost and the $Q$-factors as well as the policy learned by the learning agent which provides fundamental limits for feasible offensive and defensive moves. We propose a robust region in terms of the cost within which the adversary can never achieve the targeted policy. We provide conditions on the falsified cost which can mislead the agent to learn an adversary's favored policy. A numerical case study of water reservoir control is provided to show the potential hazards of RL in learning-based control systems and corroborate the results.

Citations (81)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.