Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

End-to-End Learning of Multi-scale Convolutional Neural Network for Stereo Matching (1906.10399v1)

Published 25 Jun 2019 in cs.CV

Abstract: Deep neural networks have shown excellent performance in stereo matching task. Recently CNN-based methods have shown that stereo matching can be formulated as a supervised learning task. However, less attention is paid on the fusion of contextual semantic information and details. To tackle this problem, we propose a network for disparity estimation based on abundant contextual details and semantic information, called Multi-scale Features Network (MSFNet). First, we design a new structure to encode rich semantic information and fine-grained details by fusing multi-scale features. And we combine the advantages of element-wise addition and concatenation, which is conducive to merge semantic information with details. Second, a guidance mechanism is introduced to guide the network to automatically focus more on the unreliable regions. Third, we formulate the consistency check as an error map, obtained by the low stage features with fine-grained details. Finally, we adopt the consistency checking between the left feature and the synthetic left feature to refine the initial disparity. Experiments on Scene Flow and KITTI 2015 benchmark demonstrated that the proposed method can achieve the state-of-the-art performance.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.