Papers
Topics
Authors
Recent
Search
2000 character limit reached

Exploring Self-Supervised Regularization for Supervised and Semi-Supervised Learning

Published 25 Jun 2019 in cs.LG, cs.CV, and stat.ML | (1906.10343v2)

Abstract: Recent advances in semi-supervised learning have shown tremendous potential in overcoming a major barrier to the success of modern machine learning algorithms: access to vast amounts of human-labeled training data. Previous algorithms based on consistency regularization can harness the abundance of unlabeled data to produce impressive results on a number of semi-supervised benchmarks, approaching the performance of strong supervised baselines using only a fraction of the available labeled data. In this work, we challenge the long-standing success of consistency regularization by introducing self-supervised regularization as the basis for combining semantic feature representations from unlabeled data. We perform extensive comparative experiments to demonstrate the effectiveness of self-supervised regularization for supervised and semi-supervised image classification on SVHN, CIFAR-10, and CIFAR-100 benchmark datasets. We present two main results: (1) models augmented with self-supervised regularization significantly improve upon traditional supervised classifiers without the need for unlabeled data; (2) together with unlabeled data, our models yield semi-supervised performance competitive with, and in many cases exceeding, prior state-of-the-art consistency baselines. Lastly, our models have the practical utility of being efficiently trained end-to-end and require no additional hyper-parameters to tune for optimal performance beyond the standard set for training neural networks. Reference code and data are available at https://github.com/vuptran/sesemi

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.