Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Res-embedding for Deep Learning Based Click-Through Rate Prediction Modeling (1906.10304v1)

Published 25 Jun 2019 in stat.ML and cs.LG

Abstract: Recently, click-through rate (CTR) prediction models have evolved from shallow methods to deep neural networks. Most deep CTR models follow an Embedding&MLP paradigm, that is, first mapping discrete id features, e.g. user visited items, into low dimensional vectors with an embedding module, then learn a multi-layer perception (MLP) to fit the target. In this way, embedding module performs as the representative learning and plays a key role in the model performance. However, in many real-world applications, deep CTR model often suffers from poor generalization performance, which is mostly due to the learning of embedding parameters. In this paper, we model user behavior using an interest delay model, study carefully the embedding mechanism, and obtain two important results: (i) We theoretically prove that small aggregation radius of embedding vectors of items which belongs to a same user interest domain will result in good generalization performance of deep CTR model. (ii) Following our theoretical analysis, we design a new embedding structure named res-embedding. In res-embedding module, embedding vector of each item is the sum of two components: (i) a central embedding vector calculated from an item-based interest graph (ii) a residual embedding vector with its scale to be relatively small. Empirical evaluation on several public datasets demonstrates the effectiveness of the proposed res-embedding structure, which brings significant improvement on the model performance.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.