Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Compound Probabilistic Context-Free Grammars for Grammar Induction (1906.10225v9)

Published 24 Jun 2019 in cs.CL and stat.ML

Abstract: We study a formalization of the grammar induction problem that models sentences as being generated by a compound probabilistic context-free grammar. In contrast to traditional formulations which learn a single stochastic grammar, our grammar's rule probabilities are modulated by a per-sentence continuous latent variable, which induces marginal dependencies beyond the traditional context-free assumptions. Inference in this grammar is performed by collapsed variational inference, in which an amortized variational posterior is placed on the continuous variable, and the latent trees are marginalized out with dynamic programming. Experiments on English and Chinese show the effectiveness of our approach compared to recent state-of-the-art methods when evaluated on unsupervised parsing.

Citations (146)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.