Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Metaheuristics optimized feedforward neural networks for efficient stock price prediction (1906.10121v3)

Published 23 Jun 2019 in q-fin.ST, cs.LG, and stat.ML

Abstract: The prediction of stock prices is an important task in economics, investment and making financial decisions. This has, for decades, spurred the interest of many researchers to make focused contributions to the design of accurate stock price predictive models; of which some have been utilized to predict the next day opening and closing prices of the stock indices. This paper proposes the design and implementation of a hybrid symbiotic organisms search trained feedforward neural network model for effective and accurate stock price prediction. The symbiotic organisms search algorithm is used as an efficient optimization technique to train the feedforward neural networks, while the resulting training process is used to build a better stock price prediction model. Furthermore, the study also presents a comparative performance evaluation of three different stock price forecasting models; namely, the particle swarm optimization trained feedforward neural network model, the genetic algorithm trained feedforward neural network model and the well-known ARIMA model. The system developed in support of this study utilizes sixteen stock indices as time series datasets for training and testing purpose. Three statistical evaluation measures are used to compare the results of the implemented models, namely the root mean squared error, the mean absolute percentage error and the mean absolution deviation. The computational results obtained reveal that the symbiotic organisms search trained feedforward neural network model exhibits outstanding predictive performance compared to the other models. However, the performance study shows that the three metaheuristics trained feedforward neural network models have promising predictive competence for solving problems of high dimensional nonlinear time series data, which are difficult to capture by traditional models.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.