Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

To each route its own ETA: A generative modeling framework for ETA prediction (1906.09925v1)

Published 24 Jun 2019 in cs.LG, eess.SP, and stat.ML

Abstract: Accurate expected time of arrival (ETA) information is crucial in maintaining the quality of service of public transit. Recent advances in AI has led to more effective models for ETA estimation that rely heavily on a large GPS datasets. More importantly, these are mainly cabs based datasets which may not be fit for bus-based public transport. Consequently, the latest methods may not be applicable for ETA estimation in cities with the absence of large training data set. On the other hand, the ETA estimation problem in many cities needs to be solved in the absence of big datasets that also contains outliers, anomalies and may be incomplete. This work presents a simple but robust model for ETA estimation for a bus route that only relies on the historical data of the particular route. We propose a system that generates ETA information for a trip and updates it as the trip progresses based on the real-time information. We train a deep learning based generative model that learns the probability distribution of ETA data across trips and conditional on the current trip information updates the ETA information on the go. Our plug and play model not only captures the non-linearity of the task well but that any transit agency can use without needing any other external data source. The experiments run over three routes, data collected in the city of Delhi illustrates the promise of our approach.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.