Emergent Mind

The Value of Collaboration in Convex Machine Learning with Differential Privacy

(1906.09679)
Published Jun 24, 2019 in cs.CR , cs.LG , and stat.ML

Abstract

In this paper, we apply machine learning to distributed private data owned by multiple data owners, entities with access to non-overlapping training datasets. We use noisy, differentially-private gradients to minimize the fitness cost of the machine learning model using stochastic gradient descent. We quantify the quality of the trained model, using the fitness cost, as a function of privacy budget and size of the distributed datasets to capture the trade-off between privacy and utility in machine learning. This way, we can predict the outcome of collaboration among privacy-aware data owners prior to executing potentially computationally-expensive machine learning algorithms. Particularly, we show that the difference between the fitness of the trained machine learning model using differentially-private gradient queries and the fitness of the trained machine model in the absence of any privacy concerns is inversely proportional to the size of the training datasets squared and the privacy budget squared. We successfully validate the performance prediction with the actual performance of the proposed privacy-aware learning algorithms, applied to: financial datasets for determining interest rates of loans using regression; and detecting credit card frauds using support vector machines.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.