Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Efficient Implementation of Second-Order Stochastic Approximation Algorithms in High-Dimensional Problems (1906.09533v2)

Published 23 Jun 2019 in math.OC and cs.LG

Abstract: Stochastic approximation (SA) algorithms have been widely applied in minimization problems when the loss functions and/or the gradient information are only accessible through noisy evaluations. Stochastic gradient (SG) descent---a first-order algorithm and a workhorse of much machine learning---is perhaps the most famous form of SA. Among all SA algorithms, the second-order simultaneous perturbation stochastic approximation (2SPSA) and the second-order stochastic gradient (2SG) are particularly efficient in handling high-dimensional problems, covering both gradient-free and gradient-based scenarios. However, due to the necessary matrix operations, the per-iteration floating-point-operations (FLOPs) cost of the standard 2SPSA/2SG is $O(p3)$, where $p$ is the dimension of the underlying parameter. Note that the $O(p3)$ FLOPs cost is distinct from the classical SPSA-based per-iteration $O(1)$ cost in terms of the number of noisy function evaluations. In this work, we propose a technique to efficiently implement the 2SPSA/2SG algorithms via the symmetric indefinite matrix factorization and show that the FLOPs cost is reduced from $O(p3)$ to $O(p2)$. The formal almost sure convergence and rate of convergence for the newly proposed approach are directly inherited from the standard 2SPSA/2SG. The improvement in efficiency and numerical stability is demonstrated in two numerical studies.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.