Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 93 tok/s
Gemini 3.0 Pro 48 tok/s
Gemini 2.5 Flash 165 tok/s Pro
Kimi K2 201 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Efficient Implementation of Second-Order Stochastic Approximation Algorithms in High-Dimensional Problems (1906.09533v2)

Published 23 Jun 2019 in math.OC and cs.LG

Abstract: Stochastic approximation (SA) algorithms have been widely applied in minimization problems when the loss functions and/or the gradient information are only accessible through noisy evaluations. Stochastic gradient (SG) descent---a first-order algorithm and a workhorse of much machine learning---is perhaps the most famous form of SA. Among all SA algorithms, the second-order simultaneous perturbation stochastic approximation (2SPSA) and the second-order stochastic gradient (2SG) are particularly efficient in handling high-dimensional problems, covering both gradient-free and gradient-based scenarios. However, due to the necessary matrix operations, the per-iteration floating-point-operations (FLOPs) cost of the standard 2SPSA/2SG is $O(p3)$, where $p$ is the dimension of the underlying parameter. Note that the $O(p3)$ FLOPs cost is distinct from the classical SPSA-based per-iteration $O(1)$ cost in terms of the number of noisy function evaluations. In this work, we propose a technique to efficiently implement the 2SPSA/2SG algorithms via the symmetric indefinite matrix factorization and show that the FLOPs cost is reduced from $O(p3)$ to $O(p2)$. The formal almost sure convergence and rate of convergence for the newly proposed approach are directly inherited from the standard 2SPSA/2SG. The improvement in efficiency and numerical stability is demonstrated in two numerical studies.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.