Papers
Topics
Authors
Recent
2000 character limit reached

Evaluating Computational Language Models with Scaling Properties of Natural Language (1906.09379v1)

Published 22 Jun 2019 in cs.CL

Abstract: In this article, we evaluate computational models of natural language with respect to the universal statistical behaviors of natural language. Statistical mechanical analyses have revealed that natural language text is characterized by scaling properties, which quantify the global structure in the vocabulary population and the long memory of a text. We study whether five scaling properties (given by Zipf's law, Heaps' law, Ebeling's method, Taylor's law, and long-range correlation analysis) can serve for evaluation of computational models. Specifically, we test $n$-gram LLMs, a probabilistic context-free grammar (PCFG), LLMs based on Simon/Pitman-Yor processes, neural LLMs, and generative adversarial networks (GANs) for text generation. Our analysis reveals that LLMs based on recurrent neural networks (RNNs) with a gating mechanism (i.e., long short-term memory, LSTM; a gated recurrent unit, GRU; and quasi-recurrent neural networks, QRNNs) are the only computational models that can reproduce the long memory behavior of natural language. Furthermore, through comparison with recently proposed model-based evaluation methods, we find that the exponent of Taylor's law is a good indicator of model quality.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.