Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Hiding Faces in Plain Sight: Disrupting AI Face Synthesis with Adversarial Perturbations (1906.09288v1)

Published 21 Jun 2019 in cs.CV

Abstract: Recent years have seen fast development in synthesizing realistic human faces using AI technologies. Such fake faces can be weaponized to cause negative personal and social impact. In this work, we develop technologies to defend individuals from becoming victims of recent AI synthesized fake videos by sabotaging would-be training data. This is achieved by disrupting deep neural network (DNN) based face detection method with specially designed imperceptible adversarial perturbations to reduce the quality of the detected faces. We describe attacking schemes under white-box, gray-box and black-box settings, each with decreasing information about the DNN based face detectors. We empirically show the effectiveness of our methods in disrupting state-of-the-art DNN based face detectors on several datasets.

Citations (35)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.