Papers
Topics
Authors
Recent
2000 character limit reached

Hiding Faces in Plain Sight: Disrupting AI Face Synthesis with Adversarial Perturbations (1906.09288v1)

Published 21 Jun 2019 in cs.CV

Abstract: Recent years have seen fast development in synthesizing realistic human faces using AI technologies. Such fake faces can be weaponized to cause negative personal and social impact. In this work, we develop technologies to defend individuals from becoming victims of recent AI synthesized fake videos by sabotaging would-be training data. This is achieved by disrupting deep neural network (DNN) based face detection method with specially designed imperceptible adversarial perturbations to reduce the quality of the detected faces. We describe attacking schemes under white-box, gray-box and black-box settings, each with decreasing information about the DNN based face detectors. We empirically show the effectiveness of our methods in disrupting state-of-the-art DNN based face detectors on several datasets.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.