Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Newton's Method and Differential Dynamic Programming for Unconstrained Nonlinear Dynamic Games (1906.09097v2)

Published 19 Jun 2019 in eess.SY and cs.SY

Abstract: Dynamic games arise when multiple agents with differing objectives control a dynamic system. They model a wide variety of applications in economics, defense, energy systems and etc. However, compared to single-agent control problems, the computational methods for dynamic games are relatively limited. As in the single-agent case, only specific dynamic games can be solved exactly, so approximation algorithms are required. In this paper, we show how to extend a recursive Newton's algorithm and the popular differential dynamic programming (DDP) for single-agent optimal control to the case of full-information non-zero sum dynamic games. In the single-agent case, the convergence of DDP is proved by comparison with Newton's method, which converges locally at a quadratic rate. We show that the iterates of Newton's method and DDP are sufficiently close for the DDP to inherit the quadratic convergence rate of Newton's method. We also prove both methods result in an open-loop Nash equilibrium and a local feedback $O(\epsilon2)$-Nash equilibrium. Numerical examples are provided.

Citations (26)

Summary

We haven't generated a summary for this paper yet.