Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Quantitative Mitigation of Timing Side Channels (1906.08957v1)

Published 21 Jun 2019 in cs.CR and cs.LG

Abstract: Timing side channels pose a significant threat to the security and privacy of software applications. We propose an approach for mitigating this problem by decreasing the strength of the side channels as measured by entropy-based objectives, such as min-guess entropy. Our goal is to minimize the information leaks while guaranteeing a user-specified maximal acceptable performance overhead. We dub the decision version of this problem Shannon mitigation, and consider two variants, deterministic and stochastic. First, we show the deterministic variant is NP-hard. However, we give a polynomial algorithm that finds an optimal solution from a restricted set. Second, for the stochastic variant, we develop an algorithm that uses optimization techniques specific to the entropy-based objective used. For instance, for min-guess entropy, we used mixed integer-linear programming. We apply the algorithm to a threat model where the attacker gets to make functional observations, that is, where she observes the running time of the program for the same secret value combined with different public input values. Existing mitigation approaches do not give confidentiality or performance guarantees for this threat model. We evaluate our tool SCHMIT on a number of micro-benchmarks and real-world applications with different entropy-based objectives. In contrast to the existing mitigation approaches, we show that in the functional-observation threat model, SCHMIT is scalable and able to maximize confidentiality under the performance overhead bound.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.