Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning Bilingual Word Embeddings Using Lexical Definitions (1906.08939v1)

Published 21 Jun 2019 in cs.CL, cs.AI, and cs.LG

Abstract: Bilingual word embeddings, which representlexicons of different languages in a shared em-bedding space, are essential for supporting se-mantic and knowledge transfers in a variety ofcross-lingual NLP tasks. Existing approachesto training bilingual word embeddings requireoften require pre-defined seed lexicons that areexpensive to obtain, or parallel sentences thatcomprise coarse and noisy alignment. In con-trast, we propose BilLex that leverages pub-licly available lexical definitions for bilingualword embedding learning. Without the needof predefined seed lexicons, BilLex comprisesa novel word pairing strategy to automati-cally identify and propagate the precise fine-grained word alignment from lexical defini-tions. We evaluate BilLex in word-level andsentence-level translation tasks, which seek tofind the cross-lingual counterparts of wordsand sentences respectively.BilLex signifi-cantly outperforms previous embedding meth-ods on both tasks.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.