Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Understanding Filter Bubbles and Polarization in Social Networks (1906.08772v1)

Published 20 Jun 2019 in cs.SI and physics.soc-ph

Abstract: Recent studies suggest that social media usage -- while linked to an increased diversity of information and perspectives for users -- has exacerbated user polarization on many issues. A popular theory for this phenomenon centers on the concept of "filter bubbles": by automatically recommending content that a user is likely to agree with, social network algorithms create echo chambers of similarly-minded users that would not have arisen otherwise. However, while echo chambers have been observed in real-world networks, the evidence for filter bubbles is largely post-hoc. In this work, we develop a mathematical framework to study the filter bubble theory. We modify the classic Friedkin-Johnsen opinion dynamics model by introducing another actor, the network administrator, who filters content for users by making small changes to the edge weights of a social network (for example, adjusting a news feed algorithm to change the level of interaction between users). On real-world networks from Reddit and Twitter, we show that when the network administrator is incentivized to reduce disagreement among users, even relatively small edge changes can result in the formation of echo chambers in the network and increase user polarization. We theoretically support this observed sensitivity of social networks to outside intervention by analyzing synthetic graphs generated from the stochastic block model. Finally, we show that a slight modification to the incentives of the network administrator can mitigate the filter bubble effect while minimally affecting the administrator's target objective, user disagreement.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube