Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deep-Learning-Based Aerial Image Classification for Emergency Response Applications Using Unmanned Aerial Vehicles (1906.08716v1)

Published 20 Jun 2019 in cs.CV and cs.RO

Abstract: Unmanned Aerial Vehicles (UAVs), equipped with camera sensors can facilitate enhanced situational awareness for many emergency response and disaster management applications since they are capable of operating in remote and difficult to access areas. In addition, by utilizing an embedded platform and deep learning UAVs can autonomously monitor a disaster stricken area, analyze the image in real-time and alert in the presence of various calamities such as collapsed buildings, flood, or fire in order to faster mitigate their effects on the environment and on human population. To this end, this paper focuses on the automated aerial scene classification of disaster events from on-board a UAV. Specifically, a dedicated Aerial Image Database for Emergency Response (AIDER) applications is introduced and a comparative analysis of existing approaches is performed. Through this analysis a lightweight convolutional neural network (CNN) architecture is developed, capable of running efficiently on an embedded platform achieving ~3x higher performance compared to existing models with minimal memory requirements with less than 2% accuracy drop compared to the state-of-the-art. These preliminary results provide a solid basis for further experimentation towards real-time aerial image classification for emergency response applications using UAVs.

Citations (95)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.