Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning Generalized Transformation Equivariant Representations via Autoencoding Transformations (1906.08628v3)

Published 19 Jun 2019 in cs.CV, cs.LG, and stat.ML

Abstract: Transformation Equivariant Representations (TERs) aim to capture the intrinsic visual structures that equivary to various transformations by expanding the notion of {\em translation} equivariance underlying the success of Convolutional Neural Networks (CNNs). For this purpose, we present both deterministic AutoEncoding Transformations (AET) and probabilistic AutoEncoding Variational Transformations (AVT) models to learn visual representations from generic groups of transformations. While the AET is trained by directly decoding the transformations from the learned representations, the AVT is trained by maximizing the joint mutual information between the learned representation and transformations. This results in Generalized TERs (GTERs) equivariant against transformations in a more general fashion by capturing complex patterns of visual structures beyond the conventional linear equivariance under a transformation group. The presented approach can be extended to (semi-)supervised models by jointly maximizing the mutual information of the learned representation with both labels and transformations. Experiments demonstrate the proposed models outperform the state-of-the-art models in both unsupervised and (semi-)supervised tasks.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube