Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Machine Learning Allows Calibration Models to Predict Trace Element Concentration in Soil with Generalized LIBS Spectra (1906.08597v1)

Published 13 Feb 2019 in physics.chem-ph, cs.LG, physics.ins-det, and physics.plasm-ph

Abstract: Calibration models have been developed for determination of trace elements, silver for instance, in soil using laser-induced breakdown spectroscopy (LIBS). The major concern is the matrix effect. Although it affects the accuracy of LIBS measurements in a general way, the effect appears accentuated for soil because of large variation of chemical and physical properties among different soils. The purpose is to reduce its influence in such way an accurate and soil-independent calibration model can be constructed. At the same time, the developed model should efficiently reduce experimental fluctuations affecting measurement precision. A univariate model first reveals obvious influence of matrix effect and important experimental fluctuation. A multivariate model has been then developed. A key point is the introduction of generalized spectrum where variables representing the soil type are explicitly included. Machine learning has been used to develop the model. After a necessary pretreatment where a feature selection process reduces the dimension of raw spectrum accordingly to the number of available spectra, the data have been fed in to a back-propagation neuronal networks (BPNN) to train and validate the model. The resulted soilindependent calibration model allows average relative error of calibration (REC) and average relative error of prediction (REP) within the range of 5-6%.

Citations (79)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.