Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Experience Replay Optimization (1906.08387v1)

Published 19 Jun 2019 in cs.LG and stat.ML

Abstract: Experience replay enables reinforcement learning agents to memorize and reuse past experiences, just as humans replay memories for the situation at hand. Contemporary off-policy algorithms either replay past experiences uniformly or utilize a rule-based replay strategy, which may be sub-optimal. In this work, we consider learning a replay policy to optimize the cumulative reward. Replay learning is challenging because the replay memory is noisy and large, and the cumulative reward is unstable. To address these issues, we propose a novel experience replay optimization (ERO) framework which alternately updates two policies: the agent policy, and the replay policy. The agent is updated to maximize the cumulative reward based on the replayed data, while the replay policy is updated to provide the agent with the most useful experiences. The conducted experiments on various continuous control tasks demonstrate the effectiveness of ERO, empirically showing promise in experience replay learning to improve the performance of off-policy reinforcement learning algorithms.

Citations (98)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.