Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Novel DDoS Attack Detection Method Using Optimized Generalized Multiple Kernel Learning (1906.08204v1)

Published 19 Jun 2019 in cs.CR

Abstract: Distributed Denial of Service (DDoS) attack has become one of the most destructive network attacks which can pose a mortal threat to Internet security. Existing detection methods can not effectively detect early attacks. In this paper, we propose a detection method of DDoS attacks based on generalized multiple kernel learning (GMKL) combining with the constructed parameter R. The super-fusion feature value (SFV) and comprehensive degree of feature (CDF) are defined to describe the characteristic of attack flow and normal flow. A method for calculating R based on SFV and CDF is proposed to select the combination of kernel function and regularization paradigm. A DDoS attack detection classifier is generated by using the trained GMKL model with R parameter. The experimental results show that kernel function and regularization parameter selection method based on R parameter reduce the randomness of parameter selection and the error of model detection, and the proposed method can effectively detect DDoS attacks in complex environments with higher detection rate and lower error rate.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.