Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Reward Prediction Error as an Exploration Objective in Deep RL (1906.08189v5)

Published 19 Jun 2019 in cs.LG and stat.ML

Abstract: A major challenge in reinforcement learning is exploration, when local dithering methods such as epsilon-greedy sampling are insufficient to solve a given task. Many recent methods have proposed to intrinsically motivate an agent to seek novel states, driving the agent to discover improved reward. However, while state-novelty exploration methods are suitable for tasks where novel observations correlate well with improved reward, they may not explore more efficiently than epsilon-greedy approaches in environments where the two are not well-correlated. In this paper, we distinguish between exploration tasks in which seeking novel states aids in finding new reward, and those where it does not, such as goal-conditioned tasks and escaping local reward maxima. We propose a new exploration objective, maximizing the reward prediction error (RPE) of a value function trained to predict extrinsic reward. We then propose a deep reinforcement learning method, QXplore, which exploits the temporal difference error of a Q-function to solve hard exploration tasks in high-dimensional MDPs. We demonstrate the exploration behavior of QXplore on several OpenAI Gym MuJoCo tasks and Atari games and observe that QXplore is comparable to or better than a baseline state-novelty method in all cases, outperforming the baseline on tasks where state novelty is not well-correlated with improved reward.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.