Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Who is in Your Top Three? Optimizing Learning in Elections with Many Candidates (1906.08160v2)

Published 19 Jun 2019 in cs.GT and cs.AI

Abstract: Elections and opinion polls often have many candidates, with the aim to either rank the candidates or identify a small set of winners according to voters' preferences. In practice, voters do not provide a full ranking; instead, each voter provides their favorite K candidates, potentially in ranked order. The election organizer must choose K and an aggregation rule. We provide a theoretical framework to make these choices. Each K-Approval or K-partial ranking mechanism (with a corresponding positional scoring rule) induces a learning rate for the speed at which the election correctly recovers the asymptotic outcome. Given the voter choice distribution, the election planner can thus identify the rate optimal mechanism. Earlier work in this area provides coarse order-of-magnitude guaranties which are not sufficient to make such choices. Our framework further resolves questions of when randomizing between multiple mechanisms may improve learning, for arbitrary voter noise models. Finally, we use data from 5 large participatory budgeting elections that we organized across several US cities, along with other ranking data, to demonstrate the utility of our methods. In particular, we find that historically such elections have set K too low and that picking the right mechanism can be the difference between identifying the ultimate winner with only a 80% probability or a 99.9% probability after 400 voters.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.