Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Learning to Reconstruct and Understand Indoor Scenes from Sparse Views (1906.07892v1)

Published 19 Jun 2019 in cs.CV

Abstract: This paper proposes a new method for simultaneous 3D reconstruction and semantic segmentation of indoor scenes. Unlike existing methods that require recording a video using a color camera and/or a depth camera, our method only needs a small number of (e.g., 3-5) color images from uncalibrated sparse views as input, which greatly simplifies data acquisition and extends applicable scenarios. Since different views have limited overlaps, our method allows a single image as input to discern the depth and semantic information of the scene. The key issue is how to recover relatively accurate depth from single images and reconstruct a 3D scene by fusing very few depth maps. To address this problem, we first design an iterative deep architecture, IterNet, that estimates depth and semantic segmentation alternately, so that they benefit each other. To deal with the little overlap and non-rigid transformation between views, we further propose a joint global and local registration method to reconstruct a 3D scene with semantic information from sparse views. We also make available a new indoor synthetic dataset simultaneously providing photorealistic high-resolution RGB images, accurate depth maps and pixel-level semantic labels for thousands of complex layouts, useful for training and evaluation. Experimental results on public datasets and our dataset demonstrate that our method achieves more accurate depth estimation, smaller semantic segmentation errors and better 3D reconstruction results, compared with state-of-the-art methods.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.