Second-Order Semantic Dependency Parsing with End-to-End Neural Networks (1906.07880v3)
Abstract: Semantic dependency parsing aims to identify semantic relationships between words in a sentence that form a graph. In this paper, we propose a second-order semantic dependency parser, which takes into consideration not only individual dependency edges but also interactions between pairs of edges. We show that second-order parsing can be approximated using mean field (MF) variational inference or loopy belief propagation (LBP). We can unfold both algorithms as recurrent layers of a neural network and therefore can train the parser in an end-to-end manner. Our experiments show that our approach achieves state-of-the-art performance.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.