Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Approximation power of random neural networks (1906.07709v2)

Published 18 Jun 2019 in cs.LG and stat.ML

Abstract: This paper investigates the approximation power of three types of random neural networks: (a) infinite width networks, with weights following an arbitrary distribution; (b) finite width networks obtained by subsampling the preceding infinite width networks; (c) finite width networks obtained by starting with standard Gaussian initialization, and then adding a vanishingly small correction to the weights. The primary result is a fully quantified bound on the rate of approximation of general general continuous functions: in all three cases, a function $f$ can be approximated with complexity $|f|_1 (d/\delta){\mathcal{O}(d)}$, where $\delta$ depends on continuity properties of $f$ and the complexity measure depends on the weight magnitudes and/or cardinalities. Along the way, a variety of ancillary results are developed: an exact construction of Gaussian densities with infinite width networks, an elementary stand-alone proof scheme for approximation via convolutions of radial basis functions, subsampling rates for infinite width networks, and depth separation for corrected networks.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.