2000 character limit reached
Automatic learner summary assessment for reading comprehension
Published 18 Jun 2019 in cs.CL | (1906.07555v1)
Abstract: Automating the assessment of learner summaries provides a useful tool for assessing learner reading comprehension. We present a summarization task for evaluating non-native reading comprehension and propose three novel approaches to automatically assess the learner summaries. We evaluate our models on two datasets we created and show that our models outperform traditional approaches that rely on exact word match on this task. Our best model produces quality assessments close to professional examiners.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.