Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Unified Speaker Adaptation Method for Speech Synthesis using Transcribed and Untranscribed Speech with Backpropagation (1906.07414v2)

Published 18 Jun 2019 in eess.AS, cs.CL, cs.LG, and cs.SD

Abstract: By representing speaker characteristic as a single fixed-length vector extracted solely from speech, we can train a neural multi-speaker speech synthesis model by conditioning the model on those vectors. This model can also be adapted to unseen speakers regardless of whether the transcript of adaptation data is available or not. However, this setup restricts the speaker component to just a single bias vector, which in turn limits the performance of adaptation process. In this study, we propose a novel speech synthesis model, which can be adapted to unseen speakers by fine-tuning part of or all of the network using either transcribed or untranscribed speech. Our methodology essentially consists of two steps: first, we split the conventional acoustic model into a speaker-independent (SI) linguistic encoder and a speaker-adaptive (SA) acoustic decoder; second, we train an auxiliary acoustic encoder that can be used as a substitute for the linguistic encoder whenever linguistic features are unobtainable. The results of objective and subjective evaluations show that adaptation using either transcribed or untranscribed speech with our methodology achieved a reasonable level of performance with an extremely limited amount of data and greatly improved performance with more data. Surprisingly, adaptation with untranscribed speech surpassed the transcribed counterpart in the subjective test, which reveals the limitations of the conventional acoustic model and hints at potential directions for improvements.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.