Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Avoiding Reasoning Shortcuts: Adversarial Evaluation, Training, and Model Development for Multi-Hop QA (1906.07132v1)

Published 17 Jun 2019 in cs.CL and cs.AI

Abstract: Multi-hop question answering requires a model to connect multiple pieces of evidence scattered in a long context to answer the question. In this paper, we show that in the multi-hop HotpotQA (Yang et al., 2018) dataset, the examples often contain reasoning shortcuts through which models can directly locate the answer by word-matching the question with a sentence in the context. We demonstrate this issue by constructing adversarial documents that create contradicting answers to the shortcut but do not affect the validity of the original answer. The performance of strong baseline models drops significantly on our adversarial evaluation, indicating that they are indeed exploiting the shortcuts rather than performing multi-hop reasoning. After adversarial training, the baseline's performance improves but is still limited on the adversarial evaluation. Hence, we use a control unit that dynamically attends to the question at different reasoning hops to guide the model's multi-hop reasoning. We show that this 2-hop model trained on the regular data is more robust to the adversaries than the baseline model. After adversarial training, this 2-hop model not only achieves improvements over its counterpart trained on regular data, but also outperforms the adversarially-trained 1-hop baseline. We hope that these insights and initial improvements will motivate the development of new models that combine explicit compositional reasoning with adversarial training.

Citations (97)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com