Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Normalizing flows for novelty detection in industrial time series data (1906.06904v1)

Published 17 Jun 2019 in cs.LG and stat.ML

Abstract: Flow-based deep generative models learn data distributions by transforming a simple base distribution into a complex distribution via a set of invertible transformations. Due to the invertibility, such models can score unseen data samples by computing their exact likelihood under the learned distribution. This makes flow-based models a perfect tool for novelty detection, an anomaly detection technique where unseen data samples are classified as normal or abnormal by scoring them against a learned model of normal data. We show that normalizing flows can be used as novelty detectors in time series. Two flow-based models, Masked Autoregressive Flows and Free-form Jacobian of Reversible Dynamics restricted by autoregressive MADE networks, are tested on synthetic data and motor current data from an industrial machine and achieve good results, outperforming a conventional novelty detection method, the Local Outlier Factor.

Citations (24)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.